Introduction to Lab-on-a-chip

Paper-based microfluidic sensors 紙張基材之微流體感測器

December 21st, 2018

Antibacterial Cellulose Paper Made with Silver-Coated Gold Nanoparticles

UV-Vis absorption spectra of different diameter Au and Au-Ag NPs. The plot shows the (a) 20 nm and (b) 15 nm Au and Au-Ag NPs at different ratios of Ag enhancement.

Scientific Reports, 7 (1), 3155

SEM images of the different Au and Au-Ag NPs on cellulose paper. The bright spots in the images are NPs, specifically (a) 20 nm Au NPs, (b) 20 nm Au-Ag_{1000/1} NPs, (c) 20 nm Au-Ag_{100/1} NPs, (d) 15 nm Au NPs, (e) 15 nm Au-Ag_{1000/1} NPs, and (f) 15 nm Au-

The survival curve of *E. coli* exposed to Au and Au-Ag NPs. *E. coli* were continuously exposed to different NPcoated cellulose paper for 24 h.

Paper Devices

Colorimetric or Electrical Sensing (capacitance or electrochemical)

Detection pad

CMC

Add CMC

H-N

Add capture o=

antibody

OH

Signal

Amplification

Add EDC/NHS

System Integration

Image capture

Surface Modification

Result readout

Smartphone Based Colorimetric Detection/Diagnosis

Selection of detection target

Selection of detection platform

Processes notice

Incubation

Image capture

Result readout

Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices

Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays

Diagram depicting the method for patterning paper into millimeter-sized channels

Chromatography paper patterned with photoresist. The darker lines are cured photoresist, whereas the lighter areas are unexposed paper.

Paper-Based Devices Fabrication

Devices (µPADs)

5 cm

Method (References)	Channel (µm)	Barrier (µm)	Advantages	Disadvantages
Photolithography (10)	186 ± 13	248 ± 13	Can pattern a wide variety of papers up to 360 µm in width.	Hydrophilic areas exposed to polymers and solvents.
Plotting (30)	~1000ª	~1000*	Hydrophilic channels not exposed to polymers or solvents; hydrophobic barriers are flexible.	Requires a customized plotter.
Inkjet etching (31)	420 ± 50	*	Reagents can be inkjet printed into the test zones using the printer.	Requires a customized inkjet printer; hydrophilic areas exposed to polymers and solvents.
Plasma etching (32)	~1500ª	_*	Useful for laboratories equipped with a plasma cleaner that wish to make many replicates of a few simple patterns.	Hydrophilic areas exposed to polymers and solvents; metal masks must be made for each pattern; cannot produce arrays of free-standing hydrophobic patterns.
Cutting (29)	1000 ^b	700 ^b	Hydrophilic channels not exposed to polymers or solvents.	Devices must be encased in tape; cannot produce arrays of free-standing hydrophilic patterns.
Wax printing (33,34)	561 ± 45	850 ± 50	Rapid (~5 minutes); requires only a commercially available printer and hot plate; hydrophilic channels not exposed to polymers or solvents.	The design of the patterns must account for the spreading of the wax in the paper.

Introduction to Microfluidic Paper-Based Analytical Devices (µPADs)

Hydrophilic area for colorimetric detection

A) Image of a 96-zone plate after application of a range of volumes (1-55 μ L) of solutions of aqueous dyes in alternating zones. B) Image showing the 96-zone plate with volumes of liquid up to 55 μ L that were completely contained by the hydrophobic barrier. C) Image of a 384-zone plate after application of 1-10 μ L of the same solutions as in (A). D) Image showing the 384-zone plate with volumes of fluid up to 10 μ L that were contained by the hydrophobic barrier. E) Image of a 96-zone plate with a serial dilution. F) Correlation of the absorbance values from a microplate reader and the gray scale values from an image acquired using a desktop scanner for the paper plate shown in (E).

Colorimetric Quantitative Detection on a Paper Device

UV-Vis absorbance spectra

Colorimetric results readout of PADs

A On-Site Hg²⁺ Sensing Strategy

Mercury affects the nervous, immune, and digestive systems and causes damage to the brain as well as kidneys and lungs of human beings.

UV-Vis Spectrometer VS. Smartphone for Hg²⁺ Sensing

UV–Vis absorbane spectra of colorimetric AuNPs and Hg²⁺-ssDNA complex-based Hg²⁺ sensing.

The colorimetric results for mercury ion detection on cellulose paper and the analytical blue/red color values of the spots.

SEM images of spots of detected AuNP mixtures (a) with and (b) without Hg²⁺ on cellulose paper.

Conventional Detection Methods of Tuberculosis

N. Engl. J. Med., vol. 363, pp. 1005-1015, 2010.

Diagnosis of Tuberculosis Using Colorimetric Gold Nanoparticles on a Paper-Based Analytical Device

ACS Sensors, 2017, 2, 1345-1354

Diagnosis of Tuberculosis Using Colorimetric Gold Nanoparticles on a Paper-Based Analytical Device

On-Site Drug Detection

In 2012, the Food and Drug Administration of Taiwan reported that 60% of reported drug abusers aged below 19 years old were addicted to ketamine.

- Invasive
 - Infection risk
- Need trained and licensed personnel

Blood test¹

Urine test²

Sample preparation³

Adulteration

- Expensive
- Time consuming processes
- Bulky size of equipment
- Power sources
 requirement

There is an urgent need for frontline officers to identify drug-impaired drivers at the roadside.

1. jessefeatonby.blogspot.com

- 2. www.wisegeek.org
- 3. www.skalar.com
- 4. agilent.com

Proposed Operation Processes

Clinical Tests - µPADs and LFAs

Sensors and Actuators B: Chemical, 2019, 282, 251-258.

Surface-Modified Cellulose Paper and Its Application in Disease Diagnosis

Polystyrene Sulfonate Penicillamine-Copper Nanocluster Aggregates for H₂S Sensing on PADs

Determination of Gold Ions in Human Urine Using Genetically Engineered Microorganisms on a Paper Device

Label-Free Fluorescent Copper Nanoclusters for Genotyping

Optical Image Analysis Based on Deep Learning

Signal Amplified Gold Nanoparticles for Disease Diagnosis on a Paper-Based Analytical Device

Development a Stacking Pad Design for Enhancing the Sensitivity of Lateral Flow Immunoassay

Scientific Reports, 2018, 8, 17319

Three-dimensional origami paper-based device for portable immunoassay applications

Paper-Based Enzyme-linked Immunosorbent Assay

